Duotech srl

Via Monte Spluga 31 - 20021 Baranzate (Milano)

tel 02.33106630 fax 02.33106640

www.duotech.it info@duotech.it

ZYMOLYASE™

"Quo Fata Vocant"

Zymolyase®, purified from culture fluid of *Arthrobacter luteus*, has strong lytic activity against living yeast cell walls to produce protoplast or spheroplast of various strains of yeast cells. Essential enzyme lytic activity of Zymolyase® is β -1, 3-glucan laminaripentaohydrolase, which hydolyzes glucose polymers linked by β -1, 3-bonds and produces laminaripentaose. Zymolyase® is reported to be a complex enzyme of Zymolyase A, β -1, 3-glucan laminaripentaohydrolase and Zymolyase B, alkaline protease, which may change the structure of the yeast cell wall to facilitate penetration of Zymolyase A. Zymolyase A alone was unable to lyse yeast cell walls. There are two preparations of Zymolyase®, Zymolyase® 20T and 100T, having lytic activity of 20,000 units/gram and 100,000 units/gram respectively. Zymolyase® 20T is ammonium sulphate precipitate while Zymolyase® 100T is a further purified preparation by affinity chromatography. Lytic activity varies depending on strains, fermentation conditions and growth phases of yeast substrate.

Form: Lyophilized powder

Purification: Zymolyase® 20T: $(NH_4)_2SO_4$ precipitation

Zymolyase® 100T: Affinity Chromatography

Activity: Zymolyase® 20T: 20,000 units/gram

Zymolyase® 100T: 100,000 units/gram

Essential enzyme: ß-1,3-glucan laminaripentaohydrolase

Other activities contained: Zymolyase®-20T Zymolyase®-100T

β-1,3-glucanase ca. 1.5 x 10⁶ units/g ca. 1.0 x 10⁷ units/g protease ca. 1.0 x 10⁶ units/g ca. 1.7 x 10⁴ units/g mannanase ca. 1.0 x 10⁶ units/g ca. 6.0 x 10⁴ units/g

Contaminants: Trace amounts of amylase, xylanase, phosphatase. No DNase, RNase detected

Optimum pH & temperature: pH 7.5, 35°C (for lysis of viable yeast cells)

pH 6.5, 45°C (for hydrolysis of yeast glucan)

Stable pH: $5\sim10$

Heat stability: The lytic activity is lost on incubation at 60°C for 5 minutes.

Specificity (lytic spectrum)⁵: Ashbya, Candida, Debaryomyces, Eremothecium, Endomyces, Hansenula,

Hanseniaspora, Kloeckera, Kluyveromyces, Lipomyces, Metschikowia, Pichia, Pullularia, Torulopsis, Saccharomyces, Saccharomycopsis, Saccharomycodes,

Schwanniomyces, etc.

Activity: SH compound such as cystein, 2-mercaptoethanol of dithiothreitol

Stability: No loss of activity was found after storage for 1 year at 4°C

PROPERTIES OF ZYMOLYASE

Lytic Spectrum by Zymolyase®

1) Susceptible strains in low concentration (0.2 units/ml)

Ashbya, Endomyces, Kloeckera, Kluyveromyces, Pullularia, Saccharomyces

2) Susceptible strains in high concentration (2.0 units/ml)

Candida, Debaryomyces, Eremothecium, Hansenula, Hanseniaspora, Lipomyces, Metschikowia, Saccharomycopsis, Saccharomycodes, Schizosaccahromyces, Selenozyma, Trigonopsis, Wickerhamia

3) Susceptibility depending on strains

Bretanomyces, Cryptococcus, Nadsonia, Pichia, Rodosporidium, Schwanniomyces, Stephnoascus, Torulopsis

4) No susceptible strains

Bullera, Pityrosporum, Rhosotorula, Sporidiobolus, Sporobolomyces, Stetigmatomyces, Trichosporon

ASSAY FOR ENZYME ACTIVITY

Unit Definition

One unit of lytic activity is defined as that amount which indicates 30% of decrease in absorbance at 800 nm (A_{800}) of the reaction mixture under the following condition.

Reaction mixture

Enzyme Solution:	0.05-0.1 mg/ml for Zymolyase® 20T	1 ml
,	0.012-0.024 mg/ml for Zymolyase® 100T	
Substrate:	Brewer's yeast cell suspension (2 mg dry weight/ml)	3 ml
Buffer:	M/15 Phosphate buffer, pH 7.5	1 ml
Distilled water:		1 ml

After incubation for 2 hours at 25°C with gentle shaking, A800 of the mixture is determined. As a reference, 1 ml of distilled water is used instead of enzyme solution.

Percentage decrease in A_{800} = (A_{800} of reference - A_{800} of reaction mixture) x 100/initial A_{800} of reference when 60% of A₈₀₀ decrease, equivalent to 2 units, is observed in the reaction system, the brewer's yeast cells are completely lysed, namely 1 unit of Zymolyase® 20T or Zymolyase® 100T lyses 3 mg dry weight of brewer's yeast.

PRECAUTIONS ON USE:

- Avoid using nitrocellulose filters and use of material other than nitrocellulose, when sterilizing. 1) Zymolyase may be adsorbed on nitrocellulose membranes.
- Zymolyase, especially Zymolyase® 100T, may not be completely dissolved in buffers. Use Zymolyase 2) as suspension.
- 3) When sterilized, Zymolyase is used in a concentration higher than 0.05%, prepare 2% Zymolyase solution in buffers containing 5% glucose, filter the suspension and dilute the solution with the appropriate buffer.

APPLICATIONS:

- Protoplast/spheroplast preparation
- Yeast cell fusion
- Transformation of yeast cells
- Yeast genetics

STORAGE:

Stable for least 1 year at 2°C. When stored at 30°C for 3 months, about 70% of the lytic activity is lost in Zymolyase® 20T and 90% in Zymolyase® 100T.

REFERENCES:

- Kaneko, T., Kitamura, K and Yamamoto, Y.: J. Gen. Appl. Microbiol., 15, 317 (1969) 1)
- Kitamura, K., Kaneko, T. and Yamamoto, Y.: Arch. Biochem. Biophys., 145, 402 (1971) 2)
- 3) Kitamura, K., Kaneko, T. and Yamamoto, Y.: J. Hen. Appl. Microbiol., 18, 57 (1972)
- Kitamura, K. and Yamamoto, Y.: Arch. Biochem. Biophys., 153, 403 (1972) 4)
- 5)
- Kaneko, T., Kitamura, K. and Yamamoto, Y.: *Agric. Biol. Chem.*, **37**, 2295 (1973) Kitamura, K., Kaneko, T. and Yamamoto, Y.: *J. Gen Appl. Microbiol.*, **20**, 323 (1974) 6)
- Kitamura, K. and Yamamoto,.: Agric. Biol. Chem., 45, 1761 (1981) 7)
- 8) Katamura, K. and Tanabe, K.: Agric, Biol. Chem., 46, 553 (1982)
- Katamura, K.: J. Ferment. Technol., 60, 257 (1982) 9)
- 10) Kitamura, K.: Agric. Biol. Chem., 46, 963 (1982)
- Kitamura, K.: Agric. Biol. Chem., 46, 2093 (1982) 11)
- 12) Calza R. E., Schroeder A. L.: J. Ben. Microbiol., 129, 413 (1983)
- Iizuka Masaru, Torii Yasuhiko, Yamamoto Takehiko: Agric. Biol. Chem., 47 (12), 2267 (1983) 13)
- 14) Shibata Nobuyuki, Kobayashi Hidemitsu, tojo Menehiro, Suzuki Shigeo: Arch. Biochem. Biophys., 251 (2), 697 (1986)
- Iijima Y., Yanagi S. O.: Agric. Biol. Chem., 50 (7), 1855 (1986) 15)
- 16) Herrero Enrique, Sanz Pascual. Sentandreu Rafael: J. Gen. Microbiol., 133 (10), 2895 (1987)

Cat. Number	Description	Package Size
120491-1	Zymolyase® 20T	1 g (20KU/g)
120493-1	Zymolyase® 100T	500 mg (100KU/g)

